MS 221 — Homework Set (3)

QUESTION 1

Parametrize the line joining the points $p = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $q = \begin{bmatrix} -1 \\ 3 \\ 1 \end{bmatrix} \in \mathbb{R}^3$.

QUESTION 2

Parametrize the line in \mathbb{R}^3 which is determined by the intersection of the planes

QUESTION 3

Parametrize the circle on the xy-plane which has centre (3, -5) and radius = 2.

QUESTION 4

Parametrize the **ellipse** on the xy-plane which is determined by the equation:

$$\frac{(x-1)^2}{5^2} + \frac{(y-3)^2}{7^2} = 1.$$

QUESTION 5

Parametrize the **hyperbola** on the xy-plane which is determined by the equation:

$$\frac{(x-1)^2}{5^2} - \frac{(y-3)^2}{7^2} = 1.$$

QUESTION 6

Parametrize the **parabola** on the xy-plane which is determined by the equation:

$$(y+1)^2 = 12(x-5).$$

QUESTION 7

Find
$$\lim_{t\to 1} \gamma(t)$$
 where $\gamma: \mathbf{R} \setminus \{1\} \to \mathbf{R}^2: t \mapsto \begin{bmatrix} \frac{t^3-t}{t-1} \\ \frac{\sin(t-1)}{t-1} \end{bmatrix}$.

QUESTION 8

If C is the curve in \mathbb{R}^3 which is parametrized by

$$\gamma: \mathbf{R} \to \mathbf{R}^3: t \mapsto \left[egin{array}{c} t^3 - t \ (3t + 5)^2 \ t^2 + 1 \end{array}
ight]$$

do the following:

- (a) Calculate $\gamma(-1)$.
- (b) Calculate $\frac{d\gamma}{dt}(t)$ when t = -1.
- (c) Parametrize the tangent **LINE** to the curve C at the point $\gamma(-1)$.

QUESTION 9

Let $\gamma(t)$ be as given in Question 8. If the **position** vector of a particle at time t is $\gamma(t)$ find the **velocity** and **acceleration** vectors of this particle at time t.

QUESTION 10

Fix an origin $\mathbf{0}$ (in 3-dimensional space) and let $\mathbf{r}(t)$ be the position vector (relative to $\mathbf{0}$) of a particle p at time t. We define:

- (a) $\mathbf{v}(t) := \frac{d\mathbf{r}}{dt}(t)$ the velocity vector of p at time t.
- (b) M := mv the momentum vector, note (m = mass of p)
- (c) $\mathbf{F} := \text{the force on } p$.
- (d) $A_q := x_q(t) \times M$ called the angular momentum of the particle p about the fixed point q. The vector $x_q(t) := r(t) q$ is the position vector of the particle p relative to point q at time t.
- (e) Torque about $q := x_q(t) \times F$.

Newton's Second Law states:

$$F = \frac{dM}{dt}$$

and The Principle of Angular Momentum states:

$$\frac{d\mathbf{A_q}}{dt} = \mathbf{x_q} \times \mathbf{F}$$
 for every point \mathbf{q} in 3-space.

2

Show that these laws are equivalent.

MS 221 HOMEWORK SET (3)

Q1
$$\gamma: \mathbb{R} \to \mathbb{R}^3: t \mapsto \gamma(t) = p + t(q-p)$$

Thus
$$Y(t) = \begin{bmatrix} -1 \\ 2 \end{bmatrix} + t \begin{pmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} - \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$\Rightarrow \lambda(t) = \begin{bmatrix} -1 \\ 2 \end{bmatrix} + t \begin{bmatrix} -2 \\ 4 \\ -1 \end{bmatrix} = \begin{bmatrix} 1-2t \\ -1+4t \\ 2-t \end{bmatrix}$$

$$3 = -8 - 73$$

$$4 = 5 + 43$$

$$3 = 0 + 13$$

$$3 = -8 - 73$$

$$y = 5 + 43 = 5$$

$$3 = 0 + 13$$

$$y = -8 - 73$$

$$y = -7 - 7$$

$$y$$

3 is the parameter

$$\gamma: [0, 2\pi] \rightarrow \mathbb{R}: t \mapsto \gamma(t) = \begin{bmatrix} \chi(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 3 + 2\cos t \\ -5 + 2\sin t \end{bmatrix}$$

$$\boxed{Q4} \quad \mathcal{E}elipse \quad \left(\frac{y-1}{5}\right)^2 + \left(\frac{y-3}{7}\right)^2 = 1$$

$$X: [0, 3\pi] \rightarrow \mathbb{R}^2 + 1 \rightarrow [x(t)] - [1 + 5 \cos t]$$

$$\forall : [0,2\pi] \rightarrow \mathbb{R} : t \mapsto \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 1 + 5 \cos t \\ 3 + 7 \sin t \end{bmatrix}$$

$$\boxed{Q5} \quad \text{Hyperbola} \quad \left(\frac{3(-1)^2}{5}\right)^2 - \left(\frac{4-3}{7}\right)^2 = 1$$

$$Y: \mathbb{R} \rightarrow \mathbb{R}^{2}: t \mapsto \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 1 + 5 \cosh t \\ 3 + 7 \sinh t \end{bmatrix}$$

Mote: This pranametrizes the right hand branch only.

$$Q6$$
 Parabola $(y+1)^2 = 4(3)(x-5)$

$$\delta: \mathbb{R} \longrightarrow \mathbb{R}^2: t \longrightarrow \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 5 + 3t^2 \\ -1 + 6t \end{bmatrix}$$

Mote: For
$$(Y^2 = 4a \times)$$
 put $(X = at^2 \text{ and } Y = 2at)$

$$\begin{bmatrix}
67 \\
\lim_{t \to 1} \left[\frac{t^3 - t}{t - 1} \right] \\
t \to 1
\end{bmatrix} = \begin{bmatrix}
\lim_{t \to 1} \frac{t^3 - t}{t - 1} \\
\lim_{t \to 1} \frac{t^3 - t}{t - 1}
\end{bmatrix}$$

$$\begin{bmatrix}
\lim_{t \to 1} \frac{t^3 - t}{t - 1} \\
\lim_{t \to 1} \frac{t^3 - t}{t - 1}
\end{bmatrix}$$

(a)
$$\gamma(-1) = \begin{bmatrix} (-1)^3 - (-1) \\ (-3+5)^2 \\ 1+1 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix}$$

(6)
$$\frac{d8}{dt}(t) = \begin{bmatrix} 3t^2 - 1 \\ 2(3t + 5)(3) \\ 2t \end{bmatrix} \Rightarrow \frac{d8}{dt}(-1) = \begin{bmatrix} 2 \\ 12 \\ -4 \end{bmatrix}$$

(c) Tangent line

$$\ell: \mathbb{R} \longrightarrow \mathbb{R}^{3}: S \longmapsto \ell(s) = \chi(-1) + S \frac{d\chi}{dt} (-1)$$

$$= \begin{bmatrix} 0 \\ 4 \\ 2 \end{bmatrix} + S \begin{bmatrix} 2 \\ 12 \\ -4 \end{bmatrix}$$

Qq Position
$$Y(t) = \begin{bmatrix} t^3 - t \\ (3t+5)^2 \end{bmatrix}$$

Velocity
$$\frac{d8}{dt}(t) = \begin{bmatrix} 3t^2 - 1\\ 2(3t + 5)3 \end{bmatrix}$$
. Acceleration $\frac{d8}{dt^2} = \begin{bmatrix} 6t\\ 18\\ 2 \end{bmatrix}$

The principle of angular Mamentum

$$\frac{d}{d}\left(x_{q}, x M\right) = x_{q} x F$$

$$= x_{g} x F$$

$$\Rightarrow \frac{d}{dt}(x_q \times M) = x_q \times F = x_q \times M$$

$$x m x_{iq} + x_{iq} \times \frac{dM}{dt} = x_{iq} \times F$$

$$\Rightarrow x_{q} \times mx_{q} + x_{q} \times \frac{dM}{dt} = x_{q} \times F$$

$$\Rightarrow x_{q} \times mx_{q} + x_{q} \times \frac{dM}{dt} = x_{q} \times F$$

$$\Rightarrow x_{q} \times mx_{q} + x_{q} \times \frac{dM}{dt} = x_{q} \times F$$

$$\Rightarrow x_{q} \times mx_{q} + x_{q} \times \frac{dM}{dt} = x_{q} \times F$$

$$\Rightarrow x_{q} \times mx_{q} + x_{q} \times \frac{dM}{dt} = x_{q} \times F$$

$$\Rightarrow x_{q} \times mx_{q} + x_{q} \times \frac{dM}{dt} = x_{q} \times F$$

$$\Rightarrow x_{q} \times mx_{q} + x_{q} \times \frac{dM}{dt} = x_{q} \times F$$

$$\Rightarrow x_{q} \times mx_{q} + x_{q} \times \frac{dM}{dt} = x_{q} \times F$$

$$\Rightarrow x_{q} \times mx_{q} + x_{q} \times \frac{dM}{dt} = x_{q} \times F$$

$$\Rightarrow x_{q} \times mx_{q} + x_{q} \times \frac{dM}{dt} = x_{q} \times F$$

$$\Rightarrow x_{q} \times mx_{q} + x_{q} \times \frac{dM}{dt} = x_{q} \times F$$

$$\Rightarrow x_{q} \times mx_{q} + x_{q} \times \frac{dM}{dt} = x_{q} \times F$$

$$x_{q_{i}} \times \left(\frac{dM}{dt} - F\right) = 0$$

$$\left(\frac{dM}{dt} - F\right)$$

 $\left(\frac{dM}{dt} - F\right) = 0$ | Since q, and,
| therefore, significantly is arbitrary

Newtons Second