MS 221 — Homework Set (6)

(The Chain Rule and The Gradient)

QUESTION 1

Let
$$p = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$
 and let the function $f: \mathbb{R}^3 \to \mathbb{R}: \begin{bmatrix} u \\ v \\ w \end{bmatrix} \mapsto f(u, v, w)$ satisfy

$$\frac{\partial f}{\partial u}(\mathbf{p}) = -3, \quad \frac{\partial f}{\partial v}(\mathbf{p}) = 2, \quad \frac{\partial f}{\partial w}(\mathbf{p}) = 5.$$

If the functions $u, v, w : \mathbb{R}^2 \to \mathbb{R}$ are defined by

$$u(x,y) = x^{2} - y^{2}$$

$$v(x,y) = x + xy$$

$$w(x,y) = 2 + xy - y^{3}$$

calculate

$$\frac{\partial}{\partial x} f(u(x,y),v(x,y),w(x,y)) \quad \text{at} \quad \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} -1 \\ 0 \end{array} \right].$$

QUESTION 2

Find ∇f_p where the function $f: \mathbb{R}^3 \to \mathbb{R}$ and the point $p \in \mathbb{R}^3$ are given by

$$f(x, y, z) = x^2 z + y \ln(z^2 + 1)$$
 and $\boldsymbol{p} = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$

QUESTION 3

Find all points $p \in \mathbb{R}^3$ such that $\nabla \varphi_p = 0$ where the function $\varphi : \mathbb{R}^3 \to \mathbb{R}$ is given by

$$\varphi(x, y, z) = x^2y + y^2z + z^2x.$$

QUESTION 4

Let $\varphi: \mathbb{R}^3 \to \mathbb{R}$ be as in Question 3 and let M be the level set determined by

$$\varphi(x, y, z) = 1.$$

Now, show that the point p = (1, -1, 1) is on the level set M and find the equation of the **tangent plane** to M at p.

QUESTION 5

The equation z = f(x, y) defines a surface M in \mathbb{R}^3 . If we put $z_0 = f(x_0, y_0)$, then the point $p_0 = (x_0, y_0, z_0)$ is on the surface M. Now, find the equation of the tangent plane to M at p_0 .

Hint: Define the function $\varphi(x, y, z) \equiv z - f(x, y)$, then

QUESTION 6

Let the functions φ , $\psi: \mathbb{R}^2 \to \mathbb{R}$ be given by:

$$\varphi(x, y) = x^2 - y^2 + x$$
 and $\psi(x, y) = 2xy + y$

If $\mathcal{C}_1,\ \mathcal{C}_2\subset R^2$ denote the level sets (i.e. curves) defined by

$$\varphi(x, y) \equiv 0$$
 and $\psi(x, y) \equiv 0$

respectively, show that $(0, 0) \in \mathcal{C}_1 \cap \mathcal{C}_2$ and find the **angle of intersection** of \mathcal{C}_1 and \mathcal{C}_2 at this point.

MS 221 — Homework Set (6)

QUESTION 1

Let $\boldsymbol{p} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and let the function $f: \boldsymbol{R}^3 \to \boldsymbol{R}: \begin{bmatrix} u \\ v \\ w \end{bmatrix} \mapsto f(u, v, w)$ satisfy

$$\frac{\partial f}{\partial u}(\mathbf{p}) = -3, \quad \frac{\partial f}{\partial v}(\mathbf{p}) = 2, \quad \frac{\partial f}{\partial w}(\mathbf{p}) = 5.$$

If the functions $u, v, w : \mathbb{R}^2 \to \mathbb{R}$ are defined by

$$u(x,y) = x^{2} - y^{2}$$

$$v(x,y) = x + xy$$

$$w(x,y) = 2 + xy - y^{3}$$

calculate

$$\frac{\partial}{\partial x} f(u(x,y),v(x,y),w(x,y)) \quad \text{at} \quad \left[\begin{array}{c} x \\ y \end{array} \right] = \left[\begin{array}{c} -1 \\ 0 \end{array} \right].$$

QUESTION 2

Find ∇f_p where the function $f: \mathbf{R}^3 \to \mathbf{R}$ and the point $p \in \mathbf{R}^3$ are given by

$$f(x, y, z) = x^2 z + y \ln(z^2 + 1)$$
 and $\boldsymbol{p} = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}$

QUESTION 3

Find all points $p \in \mathbb{R}^3$ such that $\nabla \varphi_p = \mathbf{0}$ where the function $\varphi : \mathbb{R}^3 \to \mathbb{R}$ is given by

$$\varphi(x, y, z) = x^2y + y^2z + z^2x.$$

QUESTION 4

Let $\varphi: \mathbb{R}^3 \to \mathbb{R}$ be as in Question 3 and let M be the **level set** determined by

$$\varphi(x, y, z) = 1.$$

Now, show that the point p = (1, -1, 1) is on the level set M and find the equation of the **tangent plane** to M at p.

QUESTION 5

The equation z = f(x, y) defines a surface M in \mathbb{R}^3 . If we put $z_0 = f(x_0, y_0)$, then the point $\mathbf{p}_0 = (x_0, y_0, z_0)$ is on the surface M. Now, find the equation of the tangent plane to M at \mathbf{p}_0 .

Hint: Define the function $\varphi(x, y, z) \equiv z - f(x, y)$, then

$$z = f(x, y)$$
 \iff $\varphi(x, y, z) = 0$

QUESTION 6

Let the functions φ , $\psi : \mathbb{R}^2 \to \mathbb{R}$ be given by:

$$\varphi(x, y) = x^2 - y^2 + x$$
 and $\psi(x, y) = 2xy + y$

If C_1 , $C_2 \subset \mathbb{R}^2$ denote the **level sets** (i.e. curves) defined by

$$\varphi(x, y) \equiv 0$$
 and $\psi(x, y) \equiv 0$

respectively, show that $(0, 0) \in \mathcal{C}_1 \cap \mathcal{C}_2$ and find the **angle of intersection** of \mathcal{C}_1 and \mathcal{C}_2 at this point.

QUESTION 7

Determine the **shortest distance** from the point (0, b) on the y-axis to the parabola $x^2 - 4y = 0$ in each of the following ways:

- (i) Use the method of Lagrange multipliers.
- (ii) Use the constraint $x^2 4y = 0$ to eliminate one of the variables, thus reducing the problem to the calculus of one variable.

Hint: Distance is minimized \iff (Distance)² is minimized

QUESTION 8

Let \wp be the plane in \mathbb{R}^3 which passes through the point p and is normal to the vector n. If q is any point in \mathbb{R}^3 , use the method of Lagrange multipliers to find the shortest distance from the point q to the plane \wp .

QUESTION 9

The cone $z^2 = x^2 + y^2$ is cut by the plane 2x + 2y + 2z = 4 in a curve \mathcal{C} . Find the points on \mathcal{C} which are nearest and furthest away from the xy-plane.

MS 221 Homework Set (6)

$$\begin{array}{lll}
\boxed{Q1} & \text{with} & q = (-1,0) & \text{we have} & p = \begin{bmatrix} u(q) \\ v(q) \end{bmatrix} \\
\frac{\partial}{\partial t}(u,v,\omega) & = \frac{\partial}{\partial u}(p) \frac{\partial u}{\partial v}(q) + \frac{\partial}{\partial v}(p) \frac{\partial v}{\partial v}(q) + \frac{\partial}{\partial w}(p) \frac{\partial w}{\partial v}(q) \\
\downarrow^{(\frac{\nu}{2})} & \stackrel{\mathbb{R}^3}{=} (-3) 2n + (2) (1+y) + (5) y \\
f & = \left[(-3)(-2) + (2) \cdot 1 + (5) \cdot 0 \right]
\end{array}$$

$$= [-3](-2) + (2) \cdot 1 + (3) \cdot 3$$

$$= 8$$

$$\phi(n,y,3) = x^2 + y^2 +$$

$$\nabla \varphi = \begin{bmatrix} \varphi_{11} \\ \varphi_{21} \end{bmatrix} = \begin{bmatrix} 2\pi y + 3^{2} \\ 2y3 + \pi^{2} \end{bmatrix} \quad \text{now} \quad \nabla \varphi = 0$$

now
$$\nabla \phi = 0$$

=)
$$y = 0$$
 so again $y = y = 3 = 0$

So
$$\nabla p = 0 \iff p = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$p = (1,-1,1)$$

$$q(p) = -1 + 1 + 1 = 1 \implies p \in M$$

Normal =
$$\nabla \varphi = \begin{bmatrix} -f_n \\ -f_y \end{bmatrix}$$
 note $f_n = \frac{\partial f}{\partial n}$ etc.

Equation of tempent plane is
$$(X-p, \nabla q_p) = 0$$

 $=$ $\left\{ \begin{bmatrix} y \\ 3 \end{bmatrix} - \begin{bmatrix} y_0 \\ 3_0 \end{bmatrix}, \begin{bmatrix} -f_{11} \\ -f_{21} \end{bmatrix} \right\} = 0$

$$= \int_{n}^{\infty} f_{n}(p)(n-n_{0}) + f_{y}(p)(y-y_{0}) - (3-3_{0}) = 0$$

Here
$$\nabla \varphi = \begin{bmatrix} +2i(+1) \\ -2y \end{bmatrix} \quad \nabla \psi = \begin{bmatrix} 2y \\ 2i(+1) \end{bmatrix}$$

$$\langle \nabla \theta, \nabla \psi \rangle = 2411y + 2y - 411y - 2y = 0.$$