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Gaussian process geostatistics

Given y1, · · · , yn ∈ R measured at locations x1, · · · , xn ∈ S , which we

want to interpolate to the whole space S , the classical approach in

geostatistics could be sketched as follow:

• Fit a Gaussian process model Yx∈S to the data.

• Interpolate the data at a new location x∗ with the Kriging estimator

Ŷ (x∗) = E(Y (x∗)|Y (x1) = y1, · · · ,Y (xn) = yn). (1)

• Enjoy the benefits of a statistical model.

In order to do this, we need rich classes of Gaussian processes indexed by

our space S .
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Global data: From the Euclidean plane to the sphere

• To handle global climate data, we need to consider (at least)

Gaussian processes indexed by the sphere.

• The case of isotropic processes on the sphere, (which covariance is a

function of the distance) is now well understood, and in particular

we have equivalents of the classical Euclidean Gaussian Processes,

such as Matèrn and exponential kernels.

(See Gneiting 2013 [1], Porcu et al. 2018 [7], Jeong et al. 2017 [3]

and references within for the state of the art.)
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However global climate data is not isotropic

• Climate data exhibits complex anisotropic behaviors.

• In particular it is clear that climate data is correlated at longer

ranges in the longitudinal direction.
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Anisotropic models in the literature

Jones 1963 [4] proposes to address this issue

and defines axially symmetric Gaussian

processes, which are stationary only in longitude

variable, that is to say their covariance verifies

KX (x , y) = F (θx − θy mod 2π, ϕx , ϕy ). (2)

θ

N

Furthermore an axially symmetric Gaussian process is said to be

latitudinally reversible if

F (θx − θy mod 2π, ϕx , ϕy ) = F (θx − θy mod 2π, ϕy , ϕx). (3)
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Anisotropic models in the literature 2

• Jones 1963 [4] gives a general decomposition of axially symmetric

covariances on the spherical harmonic basis.

• Stein 2007 [9] truncates it to a finite order to carry on a statistical

analysis of a Total Ozone dataset at a global scale.

• Jun and Stein 2007 [5, 6] differentiate isotropic processes to obtain

axially symmetric models.

• Huang et al. 2012 [2] consider products of separated covariances on

latitudes and longitudes.

• Recently Porcu et al. 2019 [8] proposed to modify variograms of

isotropic covariances to obtain axially symmetric analogues.
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Conventions on the sphere

• We consider the sphere S1 of radius 1.

• To a given point x on the sphere are

associated its longitude θx ∈ [−π, π] and

latitude ϕx ∈ [−π/2, π/2], in radians.

• We will use the geodesic distance on the

sphere which is given by the formula

θ

N

ϕ

d(x , y) = cos−1 (sinϕ1 · sinϕ2 + cosϕ1 · cosϕ2 · cos (θ2 − θ1)). (4)

• Notice that the longitude is not well-defined at the poles but that

(4) is consistent for any chose values.
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A naive approach... and a problem at the poles

Starting from a valid isotropic kernel, like the exponential kernel

K (x , y) = σ2e−
d(x,y)

r , (5)

a simple idea to obtain anisotropy is to separate the latitude and

longitude variables:

Ksep(θx , θy , ϕx , ϕy ) = σ2e
− |θx−θy |rθ e

− |ϕx−ϕy |
rϕ . (6)

• Ksep is valid as a product of valid kernels.

• But since longitude is not well-defined at

the poles we cannot write

Ksep(θx , θy , ϕx , ϕy ) = K (x , y) :

the kernel is not defined at the poles!
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A closer look at the poles

• From the point of view of applications, having a random field that is

not defined in two points is not an issue.

• But... the random fields indexed by S2 \ {N,S} that we obtain

exhibit singular behaviour in the neighborhood of the poles.
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Our approach

Starting from the same valid isotropic kernel, (like the exponential kernel)

K (x , y) = σ2e−
d(x,y)

r , (7)

our approach is to add decorrelation in the latitudinal direction by

multiplying by another kernel

Knew (x , y) = σ2e
− d(x,y)

riso · e−
(
|ϕx−ϕy |

rϕ

)2

. (8)

• Like previously, Knew is valid as a product of valid kernels.

• This time Knew is defined over S2 × S2.

• Knew is axially symmetric (and longitudinally reversible) by

construction.
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Simulation of Knew with fixed riso and increasing rϕ parameters
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A closer look at the North pole, Ksep VS Knew

As expected our proposed Gaussian Process is continuous at the poles.
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A new class of axially symmetric covariances

Theorem (Continuous axially symmetric covariances)

Let Kiso be an isotropic covariance on the sphere and Kϕ be a

covariance on [−π, π].

The kernel defined by

K (x , y) = Kiso(x , y) · Kϕ(ϕx , ϕy ) (9)

is a latitudinally reversible, axially symmetric covariance on the sphere.

Furthermore, if Kiso and Kϕ are continuous, K is continuous on the

whole sphere, and as such, a Gaussian field with covariance K is

continuous in L2 sense, and has almost surely continuous trajectories.
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Choice of the training dataset

• We use ERA-Interim data, which is a reanalysis of global

atmospheric data from 1979 produced by the ECMWF1.

• We arbitrarily focus on temperature on January 27th 1999 at noon,

at the altitude corresponding to the midrange pressure level of

300hPa. We sample the data at the locations of radiosonde stations.

• ERA-Interim data is chosen because its completeness and physical

coherence allow for virtually any further development, RAOB

locations for the likelihood of the application.

1European Centre for Medium-Range Weather Forecasts
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The training dataset: ERA-Interim at RAOB locations

-3 -2 -1 0 1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

200

205

210

215

220

225

230

235

240

245

250

255

14



The whole temperature field for the same day and altitude

15



Detrending

We do not pretend to tackle the whole anisotropic behavior of the

dataset with our model.

• Following Stein 2007 [9], we detrend with a truncated sum of

spherical harmonics, fitted using a least square method.

• The order of truncation is optimized by minimizing the risk on the

whole temperature field. A total of 36 basis functions is used.
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Spherical trend

The obtained trend is smooth and accounts well for the large scale

behaviour of the data.
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ERA-Interim residuals after spherical detrending

The residuals seem to still exhibits directional anisotropic at a medium

scale.
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Fitting the model

• The Gaussian process and a Gaussian white noise (nugget) term are

fitted to the residuals by maximizing the log-likelihood.

• We compare the performances of the three covariance kernels:

Kiso(x , y) = σ2e−
d(x,y)

r1 , (10)

Ksep(θx , θy , ϕx , ϕy ) = σ2e−
|θx−θy |

r1 e−
|ϕx−ϕy |

r2 . (11)

Knew (x , y) = σ2e−
d(x,y)

r1 · e−
(
|ϕx−ϕy |

r2

)2

. (12)

using the Aikake Information Criterion (number of parameters minus

log-likelihood).
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Numerical results

Kiso Knew Ksep

initial σ 1 1 1

initial range r1 (km) 3000 3000 3000

initial range r2 (km) 1000 3000

σ 2.29 2.21 1.99

range r1 (km) 1284 1780 796

range r2 (km) 803 1933

nugget standard deviation 0.02 0.02 0.02

Aikake Information Criterion 1202 1159 1191

• Our covariance outperforms both isotropic and ”naive anisotropic”

alternatives.

• The estimated ranges and parameters are consistent.
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